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Abrtract 
This paper presents a method for obtaining approrimate solutions 

to the performance andysis of pardlel processing on multiprocessor 
sys tem compored of a finite number of homogeneous processors. In 
particular, we compute the e:pected rerponse time o j  jobs conaist- 
ing of concurrent taks.  We awume that each task requires a n  e:- 
ponentidly distributed amount o j  processing. The concurrency and 
precedence relationa between tab are described by directed acyclic 
graphs, rcjerred to aa task graphs or precedence graph. Simulation 
results which we present indicate that the estimates provided by our 
method are lower boun t  to the mean overall response time of t a sk  
ezecuted on the system. 

1 Introduction 
There has been increasing interest in performance analysis of concurrent p r e  
grams in recent years. A concurrent program consists of a set of interdependent 
tasks with precedence constraintr which are usually ducribed by a task graph, 
also referred to M a precedence graph, whose nodu  represent tasks and directed 
edges represent precedence relations between tasks. One of the most important 
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d’Etudes des Telecommunications and the Centre National d e  la Recherche Scientifique 
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performance measures of concurrent programr in the overall response time of a 
concurrent program running on multiprocessor system. 

When the durations of tasks are b e d  and there are infinitely many proces- 
sors, it in easy to determine the completion time of a concurrent program by 
using PERT diagrams. If resourcer are limited, research has been carried out in 
the area of task assignment and task rcheduling. When task durations are al- 
lowed to be random, the performance analyrin of concurrent programr becomes 
more difficult. 

In order to make the analyris tractable, r h p l e  rtructures have been con- 
sidered. Robinson [Rob 791, and Sahner and Trivedi [ST 871 obtain the overall 
execution time by restricting the graph rtructure to be series-pomllel. Gelenbe 
et al. [GMSW 861 consider the same graph rtructure with random graph models 
and derive a clored form expression for the maximum speed-up which can be 
expected by executing such programs on a multiprocessor system. 

Dodin [Dod 851 rtudies the general directed acyclic graph rtructure. By 
removing edges or spliting nodes, a directed acyclic graph can be transformed 
into a series-parallel graph. Thus lower bounds and upper bounds for overall 
completion time are obtained. 

Gelenbe et a1 [GNPT 861 model the task graph of a parallel computation by 
a random, directed, acyclic graph consisting of rn vertices in which an arc horn 
vertex i ,  i = 1,2, . . . , rn - 1 to vertex j ,  j = i + 1, - - , rn exists with probability 
p. They derive aa approximation for the expected procesring time of a tank 
graph of thia type on an infinite number of procewom under the amumption 
that each tank requires an exponentially distributed amount of processing. 

In this paper, we consider performance models of concurrent programs on 
finite rewurces. h particular, we conaider the response t h e  of concurrent pro- 
grama executing on muhiprocensor ryr tem which consist of a finite number of 
homogeneous processom. The response time in defined an the delay between the 
arrival date of a job to the qs tem and the d a k  where every tank of that job 
has completed ita procewing. At &at, we assume that all jobs have the =me 
tank graph. Thin restriction is removed in Section 5. The tank graphn under 
consideration have a general directed acyclic structure. 

It in wnmed that the processing demands of the tanks compoeing a con- 
curnnt program are independent with identical exponential distributions. The 
arrivab of jobr (i.e., concurrent programr) to the multiprocemor q r t e m  are 
governed by a Poisson process. We abo aarume that tanka are aarigned to pro- 
cesrors just before their execution, and that there k no a priori knowledge of - -  
the processor upon which a task will be executed. 
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The model we consider is analytically intractable. In this paper, we obtain 
a computationally simple solution for the average delay of jobs in the system 
using an approximate technique based on product form networks. 

In Section 2, we describe the problem in detail. In Section 3, the approxi- 
mate solution b described, whereas in Section 4, approximate solution results 
are compared to simulation rcsults. Section 5 provides an extension of our 
method to a multiprogramming environment. 

2 Problem description 
We assume that the multiprocessor system under consideration has M identical 
procesaom. A main memory ia shared by all procemors. It is assumed that 
this memory b of unlimited she ao that it can store the addrew space of all 
program which are present in the qstem. The workload consbtr of a set of 
structurally identical concarrent program consisting of a b e d  number of inter- 
dependent tasks. The precedence constraints between tasks are defined by an 
acyclic precedence graph in which each node represents a task. 

We consider a stream of jobs (i.e., concurrent programs) arriving to the sys- 
tem according to  Pokon procesa with parameter X . All the j o b  have the 
same precedence graph, denoted by G . Each taak requires an  exponentially 
distributed proceuing t h e  with parameter p . Proceasing times of different 
tasks are amumed to be independent. Let N be the mudmum number of pre- 
decessors that tanks of graph C may have, N 5 m - 1 , where m is the number 
of tasks in the job (or noden in C). 

Upon arrival, a job ia immediately split into its constituent taaks so that 
tasks which have no predecewom ue ready for immediate execution and enter 
directly into the procemwr queue waiting for service by one of the proceallors. 
The other tasks, which are not yet available for execution because of precedence 
constraints, have to wait in a buffer until their predecessors have been serviced. 

We model thin wait aa follawr. Tasks having i (i = 1,2, . , N) predecesaora 
enter buffer i , and wait for their i predecessors’ service completion. When the 
execution of a taak b completed (by one of the procusora), it leaves the system 
and may free some tasb waiting in one of the buffers. Once released by all 
its serviced predecessor tasks, a tank leaves the buffer to  join the newer queue. 
An arriving job remains active in the aystem until all the tasks of the job have 
completed execution. 
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2.1 The general system model 
An exact representation of the syrtem could be the following. The state of the 
system is a collection of tasks which are either waiting for their predecessor 
tasks to be terminated, or waiting in queue, or being procwsed by one of the 
processors. For a tank to be waiting in queue or to be processed, all of its prede- 
cessor tasks must be processed. Amuming FIFO service at the procenuors, the 
state murt abo  reprenent the order of arrival of tanh,  which b determined by 
the order in which the programs they belong to have arrived. 

Each task will be denoted by a pair of integers (i, j )  where i b the program 
number and j L the tank number within the program. The state of the system 
will be represented by 

where W and Q are defined an follows: 
s E (WQ)  

( t i ,  t 2 , .  . . , tlol), ti (1 5 i 5 191) b a task, and there 
are 101 tasks running or ready to run, 

if there are no task8 in the system. 

Q =  1 
0, 

The tasL ti in Q are given in FIFO order with t l  being at the head of the 
queue. Therefore the first M of these tanks will be actually running. 

0, 

(w1, wp, * * a ,  wlwl ) ,  

if no tasb are waiting, 

if there are IWl tanks waiting. 
w = {  

where each W I  in a pair 
wi = (TI ,  Ai); 

in which TI b a task and A in the wt  of tanh  which are the immediate pre- 
decessora of TI . In fact, A1 will be unnecennary if aU the program running in 
the system have exactly the same precedence graph; in that particular case the 
task TI uniquely identifies the aet A( for all program. However if program can 
have different tank graph,  the net A1 will have to be specified. 

The analysh of thin general state-space model beem beyond the capability of 
analytical modelling. In order to illuatrate the complexity of the model comider 
the state transition associated with the arrival of a program, from S = (W,Q) 
to S' = (W', 9') : 

(~i,...,~~~~,w~~~+~,~..,wITy,+~), if there are k tasks with 
predeceosora in the arriving program, 

if IWl = O  and k = O .  

W' 



( t  ~ , . . . ,  ~ ~ Q ~ , ~ Q ~ + ~ , ~ ~ ~ , ~ Q ~ + ~ ) ~  if there are j tasks without 
predecessors in the arriving program, 

if 101 = 0 and j = 0 .  

Q' G 

Obviously wi = {T,', A:} , so that the ret of tasks of the arriving program 
is given by { ~ ~ l + ~ , ~ ~ ~ l ~ ~ l + ~ , ~ Q 1 + l l ~ ~ ~ , t ~ q l + j }  . Furthermore the order in 
which the taakr ti which have no predeccsson are placed in the processor queue 
Q' is of importance; we shall aooume that they are placed in the order of increas- 
ing task number, so that the task with no predecesson and with the smallest 
task number h placed closest to the head of the queue. Thb  will be the rule 
which will be used in general for placing tash in the processor queue. 

The representation of the other transitions related to taak departures i 
even more complex. That b why in the rest of thb  paper we shall deal with 
a simplified model in which tasks and their predecessors will not be identified 
individually, and certain simplifying mumptionr will be made about the state 
transitions. 

2.2 The simplified model 
In the simplified model, we shall consider generic tash.  The state of the syrtem 
will be represented by the vector 

k =  (ko,kl,...,kN) 

where k; represents the number of t u h  in the system which have i (1 5 i 5 N) 
predecessor tasks. Recall that N b the maximum number of predeccvon which 
a task may have. & denotes the number of tanka which have no unfinished 
predecesson at the instant conridered. Thin state representation h obviously 
much simpler than the general one. However it do- not capture in a precb 
manner the structure of the task grapha. The state transitiom form k to k' are 
given aa follows for the simplified model. 

0 Arrival of a program or job represented by a sequence of task arrivab. 
Let X be the arrival rate of program to  the aystem. We shall consider 
a Poboon arrival rate of tanka of rate A r n  , rn being the total number of 
taoh per program. Thw we are modelling job arrivab by a flow of ringle 
task arrivab. Let mi be the number (or average number for a random 
program graph) of tasks having i predecessors. Upon arrival of a task, 
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with rate 

with probability chosen to be pi E mi/m. Notice that E,” mi = m . The 
rate of transition from state k to this particular k’ is thus Amp; . 

0 Departure of a task from one of the wait buffers. 
We ansume that transitions from state k to some state 

k’= ( k o +  l , . - - , k  - l , . . . , k ~ ) ,  1 I i 5 N 

where ki > 0, occur with rate p i ( k i )  . These represent the departure rate 
of a task from the wait buffer into the processor queue. p i (k , )  will be 
determined a a function of model parameters as given below. 

Departure of a taak from the processor queue. 
This will lead into the state 

Thus we are aasuming that all individual tanks have independent expc- 
nentially distributed execution timen of average value l / p  . We may take 
p = 1 without lose of generality. 

No other state transitions, except for thooe given above, are allowed to  oc- 
cur. Figure 1 illwtratea the simplified model. 

3 Delay analysis 
The determination of the response time of a job described by a taak graph C 
(ie., the overall delay of graph C’s t a a b  through the system), denoted by &, 
i.3 of crucial importance in qualifying the performance of parallel processing. 
However hardly any theory exists to tackle such problems. The problem seems 
to be open in its general form. 

For the d e  of obtaining a tractable mlution to the aystem, we restrict 
our attention to the simplified model, in which the following two simplifying 
assumptions have been made in Section 2.2. 

A1) Every buffer M replaced by a FIFO queue. The service time of 
queue i ( 1  I i 5 N) M exponentially distributed with parameter pi 
defined in (3). When a customer of queue i ia serviced, it joins the 
queue 0 (the multiproctsmr queue). 

- 
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Servers 

Queue 0 
Task Arrivals 

Queue 1 Server Queue 

p2 

Queue N 

Figure k The Model Deacription 

A2) The anivab of tuL to the ryrtem constitute a Poiaaon proceaa 
of parameter A, A = d. Let TI, T,, - - - , T', - - - be the Uriving krk. 
We aaaume that b k a  Tim+s,. * * , Tim+,,, farm a precedence 
gnph (i = 1,2, 0 ) .  upon arrival, a tut becoma 8 cuatamer of 
queue i (0  < j I N), denoted by Cj , with probability pj = q/m. 

With wumptbns A1 and A3, we obtain a product form network (cJ. 
[BCMP 751) which provider the bui of our approach. 

Before proceeding with the analpb, we introduce the following notation: 

0 P(k) : joint stationary queue length probability dirtriiution, 

0 pi(k) : rtationary probability for queue i (0 < i < N) to have ki (n = 

0 E h  : mean number of tub in queue i (0  I i I N), 
0 Ek : mean number of task in the ryrkm, 

0 & : mean reaporue time of taka in queue i (0 5 i 5 N), 
0 & : mean response time of taka in the rptem, 

0 Q : mean number of jobr in the ryrtem, 

0,1,2, -. .) culltomur, 
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0 & : mean graph response time of graph C, ie., the overall delay of tasks 
of graph G through the system, 

0 q: expected waiting time of j customers who simultaneously arrive at 
queue 0, 

qi : service contribution to queue i (0 5 i 5 N) of a customer CO leaving 
queue 0. 

The notion of rerv ice  contribution in introduced in order to derive pi (1 5 
i 5 N). Let C, be the ret of nodes of graph G, Suc(u) the ret of succeMors of 
u, rank(u) the number of predecessors of node w. qi is meanured by the average 
number of successors having i predecessors. 

(2) 
1 
m 

qi 5' -( l(tonk(u') = i)) 
WEC. u'ESuc(u) 

where 1(z) in the characteristic function: 

1, i f z i n t r u e  
1b) = { 0, i f z in fabe  

Thus we may approximate the effect of the departure of a tank from the system, 
on the set of waiting tanks, aa the departure of ( q i / i )  taka on the average from 
the set of tasks in the i-th waiting queue. Thin leads to the approximation: 

where 7 i the effective departure rate of the multiprocaaor service queue: 

it 1 

Since our approximate model m an open product-form network, we have the 
following formula for the joint queue length probability ([BCMP 751): 

where K i a normalining constant, p,, is expressed by (l), and by the nature of 
our model, 

a 



and for 1 5 i _< N 
(8) k ( n )  = h, n =  1,2,..- 

We derive the marginal queue length probability distribution Pi(k,) (i  = 
0,1,. . . , N) in the following way. 

Let 

then 

Summing over all n = 0,1,2, e,  we have 

Hence we get the expreaaion of Ki 

Therefore, for i = 0,1, . . , N and n = 0,1,2, . - e, (14) can be rewritten aa 
~ . 
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For i = 0,1, - .  , N , the mean queue lengths are expressed as 

n= 1 

So the mean number of tasks in the system Ek is given by 

N 
E k = x E k  

By Little’s results, 
customer Ci (i = 0,1, 

and the average delay 

i= 0 

we obtain the formula for the average response time of a 

of a task & 

R Rt = - A 
The above formulae provide performance measures a t  the task leveL In par- 

ticular, R, (i = 0, 1, - .  . , N) indicates the time that a task having i predecessors 
must expect to  wait before becoming available for execution, and & indicates 
the expected delay of a task passing through the system 

We now compute Rc, the average response time of jobs. First of all, we 
define the concept of level. 

The level of a node v of a directed acyclic graph, denoted by L(v) ,  is defined 

1. L(u)  Ef 1 , if v E C, and v has no predecessor, 

2. L(v )  = (m%pr,(,,) L(p))+l I where P r e ( v )  denotes the set of immediate 

The level of a task is conridered an the level of the corresponding node in 

as follows: 

predecesson of node v. 

the task graph. The leuel of a graph, denoted by Lc, in given by 

Lc = max L(v) 
eEC. 

In order to estimate the mean resporw time of jobr, we neglect the fact that 
task processing timer will vary in general, and we m a m e  that they are conatant. 
Therefore we annume that task8 of a same job are aeMced by the processom level 
by level, and a task of level i can be seerviced if and only if all tasks of level i - 1 
belonging to the name job have completed execution.-Eurthermore we assume 
that 

- 
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AS) Tasks of the same level become simultaneously available for 
execution. 

Let t l ,  t 2 , . .  , tu be a group of tasks concurrently arriving a t  the multipr- 
cessor service queue. Without loss of generality, we assume that their service 
order b tl 4 t g  4 4 tu. Let Wk(n) denote the mean waiting time of task t k  
(1 5 k 5 u) before service if there are n (n = 0,1,2, .) t a s b  in the queue a t  
the instant of the amval of the group. Thus we have the formula 

Therefore, for j = 1,2, 
the server queue can be expremed aa 

a, the expected waiting time of j concurrent tasks in 

00 

(23) 
- w j  = PO(.) * wj(n) 

-0 

or 

q= 2 P o ( n ) . ( n + k - M ) . p " / M  (24) 
n= ma=( M - k+l,O) 

Let b ( l )  denote the number of tasks of level I (1 I 1 5 Lc). According to 
assumption AS, tasks are rerviced level by level, and tasks of the same level 
concurrently arrive at  the multiprocessor queue. Therefore the job responw 
time of graph C, &, may be expremed as the s u m  of the completion time of 
each level: 

1 
(25) Rc = E(- + Tirb(l))  

I= 1 p -  

And finally, by Little's result, we get the average number of jobs in the system 
Qi  

Q = A . &  (26) 
Notice that the synchronisation delay of tasks induced by the precedence 

graph is taken into account in computing the mean number of t a s b  and the 
task response time. In computing the mean delay of a job pasuing through the 
system, however, the synchronisation delay of tasks is ommited since we neglect 
the variability of the wrvice timw of the tasks. 

4 Comparison of approximations with simula- 
tion results 

In this section we compare OPT approximations of expected job response time 
against results obtained &om simukfioni. The task g ~ ~ h - ~ a m ~ e s - ~ - e s e l e c t ~  
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from various parallel processing application a r e a  ruch M numerical analysis, 
image processing, etc. Their structures are presented in the Appendix. Tables 
1-5 report results of comparisons of approximations with simulations. Figure 2 
illustrates the response times of graph 3 under different syrtem load conditions. 
The simulations have been carried out with the QNAP2 package. 95% confi- 
dence intervab have been calculated with the regeneration method. The system 
load used in Tables 1 to 5 is defined by 

Table 1. Comparison of job response time for graph 1. 
( x = 0.06, p =  1 ) 

' number of system approximate rimulation relative 
processom load soh  tion estimate error % 

1 0.720 32.57 46.84f2.45 30.3 
I 

2 0.360 11.19 12.21*0.22 8.3 
3 0.485 8.71 9.27f0.09 6.1 
5 0.240 8.02 8.39f0.06 1.1 
10 0.072 8.00 8.30f0.06 3.6 

Table 2. Comparison of job response time for graph 2. 
( A = 0.06, p =  1 ) 

r number of 11 ryrtem I approximate I rimulation I relative I 
d a t i o n  

0.480 
0.320 
0.383 30.0 

10 0.096 31.4 
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Table 3. Comparison of job ruponse time for graph 3. 
( A = 0.06, p = 1 ) 

processors 
1 
2 

I number of 11 system I approximate I simulation 1 relative 1 _ _  
load solution estimate error % 
0.960 256.00 260.2f37.61 1.6 
0.480 14.94 18.69k0.44 20.1 

L 

3 0.320 10.92 13.78f0.16 20.8 
5 0.192 10.03 12.59f0.08 20.3 
10 0.096 10.00 12.49f0.07 19.9 

number of system 
processors load 

approximate simulation relative 
solution estimate error% 

1 
2 

I 11.3 10 11 0.090 I 7.00 I 7.89f0.05 I 

.. 

0.900 78.00 134.3f14.89 41.9 
0.450 12.78 16.10f0.45 20.6 

Table 5. Cornpariaon of job rwponse time for graph 5. 
(x=o.M,p=l) 

3 1 0.300 9.79 
5 11 0.180 7.21 

Our approximations compare favorably with the simulation results. The 
relative emora are mostly within 10 or 20%, and in the wont case within 40% 
of the simulation results. The fact that our approximation underestimates the 
overall delay can be explained by the three simplifying aaaumptions. Indeed 

1. Bulk arrival queueing systems behave generally worn than single arrival 
systems under the same load. 

2. Dependent services (in our model,-servicea of queue 1 to  N) generally 
imply a larger variance of service time, so that the waiting time is greater. 

10.1M0.12 3.0 
8.21f0.06 12.2 
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5 

4 

3r 

21 

1I 

10 &ssm 

Svstem Load - 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

------ : Simulation Results 
: Approximations 

Figure 2: Response Tim- of Graph 3 Under Diflcrent System Load Conditions 
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3. Synchronization of tasks intrducea additional delays to task execution 
times. 

These intuitive arguments indicate that our approximation provides lower bounds 
to  expected response time of jobs. 

5 The extension of the method t o  multipro- 
gramming systems 

The extension of our approximate solution to  the performance analysis of paral- 
lel processing in multiprogramming environments is immediate. In this rection, 
we shall only discuss it briefly. T h e  notation, 3 not redefined, is taken from 
Section 3. 

In a multiprogramming system, different types of jobs are allowed to be 
executed simultaneously. Let C1, Gg, . . . , CH ( H  2 1) denote task graphs of 
jobs of classes 1 , 2 , . - . , H ,  respectively. We s s u m e  that arrivals of jobs of 
classe h (h = 1,2, . . . , H), are generated by independent Poisson processes with 
parameter Ah.  Jobs of class h have mh tasks which are divided into Nh ( N h  5 
m h  - 1) groups according to their respective number of predecessors. Let 

Every task (whichever clans or job it belongs to) K assumed to require an expo- 
nentially distributed amount of proceseing wit6 parameter p. 

By replacing bulk anivab with P o i o n  arrivals, and replacing waiting buffem 
with independent exponential service queues, we obtain a new simplified model 
which is similar to  the one in Section 3. We thus consider a stream of tasks 
t l ,  t z ,  . . . , t,, .. . arriving to the syyrtem, where t,, (n 2 1) belongs to  a job of 
clZss j with probability mi/  m h .  The arrivals are represented by a Poisson 
process with parameter A, 

W 
A = x m h * X h  (29) 

h= 1 

Upon arrival, a t a k  becomes a customer of queue i (0 5 i 5 N) with probability 
Pi I 

where 
mh, = number of tasks in C h  having i predecessors. (31) 
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which satisfies 

i = O  

The concept rcrvicc contribution in represented by 

where Gt denotes the set of nodes of graph Gh, Such(u) denotes the set of 
successors of u. 

Formulae (5)-(8), (17)-(21) remain valid for the queue length probabilities, 
mean queue lengths, mean number of tasks in the system, and average delays of 
tasks. Furthermore, the mean number of tasks which belong to  jobs of clans j 
( j  = 1,2, .  .. , H) in queue i (a = 0 ,1 , .  . , N), denoted by Ekji ,  can be expressed 
M 

where Eki  is expressed by (la),  and the mean number of tasks which belong to  
jobs of c h  j ( j  = 1,2,. . , H) in the system, denoted by E k j ,  can be expresaed 

where E k  b expresaed by (19). 

The idea for computing the expected responne time of a job of c h  h remaim 
the same. Maintaining the sssumption AS, we-can rewrite (25) as follows 

where &, denotes the expected response time of a job of clasr h, Lc, denotes 
the level of graph Gh, bh(l) denotes the number of tasks in graph Gh at level 1 
(1 5 15 Lc,), and ( j  = 1 , 2 , - . - )  M given by (24). 

Similar to (26), the average number of active jobs of class h is expressed as: 

Q h = A h ' R c *  (37) 

and the average number of jobs in the system 
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As above described, we obtain a computationally simple estimates for per- 
formance analysis for parallel processing in multiprogramming environments. 

6 Conclusions 
Paralleliam is often limited by precedence relations within programs and finite 
resources in parallel processing system. Performance predictions for concur- 
rent programs on multiprocessor systems are of crucial importance for both 
software and hardware designers. Nevertheless hardly any theory is available 
for analysing the performance of concurrent program which have general di- 
rected acyclic graph structures and execute on multiprocessor systems with a 
limited number of processom 

In this paper, we have considered the expected reaponse time of concurrent 
program executed on multiproccaaor aystemn with a finite number of proceb 
sori. We have introduced an approximate model to estimate the perfomance 
measures of parallel processing. The method has been extended to multipre 
gramming system. 

The multiprocessor system under consideration consists of a finite number 
of homogeneous procemrr which share a central memory. Arriving jobs (ie., 
concurrent p r o g r m )  consbt of taab with identical exponential execution time 
distribution. The concurrency and precedence relationship between tab are 
defined by dkcttd acyclic graphs of general structure. The anivab of jobs art 
assumed to be generited by a Poianon procem. 

Becauw of the concmency, the queueing network resulting from such a sys- 
tem does not have a prodact-form solution. An approximate solution method 
has been described which modeb the system by a wt  of waiting queues for 
tasks whose predecesaom have not yet terminated their execution, and a central 
server with variable wrvice rate. Some simplifying wumptions have been made 
to derive the estimater of the response time of jobs. The accuracy of the a p  
proximation haa been reported through compariaona against simulation results. 
Some arguments have been provided to indicate that our approximations are 
lower bounds to the expected response time of jobs. 

Future rawarch topics include investigating approximate solutione to  per- 
formance estimates of concurrent program consisting of tasks with dzerent 
service distnbutiom, and approximate solutiom to the cane where task assign- 
ment strategies are static, which means that each task haa a previously specified 
procemor destination. 
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